------- Forum post ------

Well I finally managed to find out the cause of the problem. It would have taken a lot longer without the code that petr supplied. This code enables access to the registers without the need to go into kernel space although it does need to be run with sudo (there are probably ways round this).
// skip this bit if you know what clock stretching is //

Just in case you don’t know, clock stretching is a method of slowing down the I2C bus for slower slave devices. It is the equivalent of hardware handshaking (RTS/CTS) on a serial bus. The slave at any point in time (see later) can hold the clock line low, the master should check for this and wait until the slave releases it. In this way the slave can have time to do what it needs to do without missing any clock pulses. The master of course will not wait forever and so will time out if the slave holds the line too long although once this happens the bus is dead anyway if the slave will not relinquish control.

// end of clock stretch explanation //

The problem is with clock stretching, it took so long because I needed to be certain of the exact nature of the problem. It was confusing because the BCM, I2C hardware does indeed have a register dedicated to the clock stretch time out. This is either not working or the stretch is only handled at byte level. In other words a check for the slave holding the clock low is only carried out at certain times (or not at all) see later.
The solution.

There are two solutions, one involves changing the firmware on the BV devices and the other is to use a bit banged I2C interface:

Bit Banged interface

I have written an interface that can be compiled as follows:

gcc –o i2cbb bcm2835_i2cbb.c bcm2835.c

and can be run: sudo ./i2cbb

The link to the GPIO is done by the code in bcm2853.c (//www.open.com.au/mikem/bcm2835/) The file could be made smaller by just extracting the bits needed from this or to compile to object and use the .o file. I did try to install it but it didn’t seam top make any difference. I started out with the code provided by petr (http://pastebin.com/uRAPjcN0) given in the post above.

The bcm2835_i2cbb.c file contains a main() and examples within that for running. One advantage is that any GPIO pins and even more than one set of pins can be used for the interface. The pins I used are GPIO 17 and 21 (sda,scl). These correspond to physical pins 11 and 13, see http://elinux.org/RPi_Low-level_peripherals.

There is an example for i2cdetect, the same as i2c-tools but because there is access to start and stop conditions, this is safe to run no matter what is connected to the bus. The code is set to run at 100k (clock delay 300) however the delay is simply a counter and so there will be problems if the hardware changes.
To test the program un-comment the lines as required from main(). I suppose this could also be compiled as a .o file and used as a library. It would be nice to have something like this as a proper device driver being an alternative to the I2C driver provided.

Firmware Change

The BV devices are more complex than the usual RTC and EEPROMS and so need a bit of time to process the information, hence clock stretching. Some earlier firmware I have eliminates the need for clock stretching as it buffers the data. However it is possible for the buffer to become full of course and without clock stretching how is this controlled other than the user being aware and not sending too much data at once. A backwards step I think.
I will wait until the BCM chip is fixed, thanks to petr for the link about clock stretching not working on the BCM.

A big thank you to all who have contributed to this. I can now say I know much more about Linux than I did two weeks ago, I also don’t need to spit on the ground every time Raspberry Pi is mentioned anymore.

