
BV4533

I2C or Serial 6 Way Relay

Date Firmware Revision

February
2018

1.0.4 Preliminary

11 Feb.
2018

1.1.0 Serial Updated

3 Sep. 2018 1.1.0 I2C corrections, trigger
is not used

Introduction
This is an I2C or Serial relay for use with microcontrollers, for
example the Arduino, Raspberry Pi etc..

There is also a USB option.

Description
The device is access either by I2C OR Serial depending on the
device supplied.

BV4531 Serial

BV4531U Serial with USB

BV4532 I2C

Relays can be switched on, off, timed with commands.

Features

 User Selectable I2C address (BV4532)

 Multiple serial devices

 5V supply

 Relay action (on or off) can be timed 1 second to 18 Hours

 Requires only 2 control wires (TX/RX) ro (SDA/SCL)

 Fitted with 10A relays

 Size 60mm x 85mm (height approximately 20mm)

Physical Description

The PCB has 3 connection options, all the connector pads are in
place but not all of them may be active for the particular device.

I2C Applicable only to the BV4532 (see I2C section)

Serial Applicable only to the BV4531 (see serial section)

USB Applicable only to the BV4531U (see serial section)

EEPROM Locations
The values in the EERPOM effect the operation of the device and

are read on start up, some values are stored in RAM and so can be
temporarily changed and some commands change the EEPROM values.

Adr Default Description

0 0x55 System Use

1 70 I2C address (only relevant for I2C)

2 17 Not used

3 4 Baud rate code (only relevant for serial)

4 1 Prompt (only relevant for serial)

5 0 Addressing (applies to serial only)

14 70 I2C address copy (only relevant for I2C)

240 70 I2C address copy (only relevant for I2C)

EEPROM Locations and default values

The user is free to use any locations that are not occupied by the
system but for future use it is best to avoid locations below 32.

Most EEPROM values are only read on start up so when changing
values they may not take effect until the device is reset.

I2C Address

This is only applicable to I2C devices, it is stored in 3 places
for security, should one location become corrupt then it will be
reset to the other two values. There is a command to change the
I2C address but it can also be done by directly writing to the
EEPROM, if so than at least two locations need changing.

Baud Rate

Applies only to serial devices. This is a code between 1 and 8 as
follows:

1 1200 Baud
2 2400 Baud
3 4800 Baud
4 9600 Baud (Default)
5 19200 Baud
6 38400 Baud
7 57500 Baud
8 115200 Baud

Prompt

To help with serial communication the device when waiting for a
command will output ‘>’ if this value is set to 1.

Addressing

It is possible to address more then one serial device using
addressing, see serial section.

BV4532 (I2C)
This has the I2C interface.

I2C Interface

Pin Description

SCL (*2) Clock

GND (*2) Ground

SDA (*2) Data

V+ (*2) Supply voltage for device *

I2C Electrical Connection

The I2C connector has duplicate pins, this is to allow for daisy
chaining of I2C devices. Please remember that unless buffered the
length of the cable should be limited.

*Voltage: The device works with 5V mainly because of the relay
specification, there are NO pull up resistors on the device as
these are normally provided by the master device. The device can
be supplied with 5V and still work with 3.3V without and
detrimental effect as the pull up resistors (on the 3v3 host) take
care of the ‘high’ value of the voltage.

The device has a standard I2C interface and will act as a slave.

0x46 (0x23 7 bit) Keypad & LCD address

Commands are realised by using the first byte written as the
command byte.

There is one exception to this which is a general call (address 0)
followed by 0x55. This will reset the EEPROM contents back to the
factory defaults. The command is useful if the i2C address becomes
corrupt due to inadvertently writing the wrong values to the
location where the i2C address is held.

Address (0x46 or 0x23 7 bit)

Device I2C address is stored in EEPROM in three places (see eeprom
locations). This address should be set to between 10 and 250 using
EVEN numbers ONLY. It is the 8 bit address value so an address of
68 will be on some systems the read and write address 34.

There is a command however that will change all 3 addresses at
once.

Commands

The first byte is the command byte that initiates all
transactions, as an example to turn on relay 1 requires the
command byte followed by the relay number followed by the action
(on or off)

Example 8 bit

i2c_start()
i2c_write(0x46) // write address
i2c_putc(2) // command
i2c_putc(1) // relay
i2c_putc(1) // action 1=on
i2c_stop()

Where a read is needed say to get current timer values a restart
can be used or start stop

Example 8 bit

i2c_start()
i2c_write(0x46) // write address
i2c_putc(3) // command to get timer value
i2c_putc(1) // relay to get value from
i2c_stop()

i2c_start()
i2c_putc(0x47) // address with read bit set
value = i2c_get(1) // **
i2c_stop()

** When reading I2C that last read should send NACK to indicate it
is the last byte to receive.

Adruino and other controllers use 7 bit addressing where most of
this is taken care of with the read and write commands.

Command Range Notes

1
c,r,a,th,tl

th+tl: 1
to 65535

a: 0 or 1

Set Relay 0 to 5
c: is the command 1
r: is the relay number from 0 to 5
a: is the action for the relay to perform, 0 is turn
off an 1 is turn on.
th and tl: from a 16 bit number from 1 to 65535 which
is a counter to set the action. This time is
approximately seconds.
Example
Turn on relay 2 in 15 seconds
i2c.write(2,1,0,15)
Turn off relay 3 in 5 minutes (300 seconds)
i2c.write(3,0,1,44) (300 = 0x12c)

2
c,r,a

Turn on or off relay now 0 to 5
c: is the command 2
r: is the relay number from 0 to 5
a: is the action 0=off, 1=on

Example
Turn on relay 4
i2c.write(2,4,1)

3
c,r

0 to
65535

Gets Relay current timer value for relay 0 to 5
c: is the command 3
r: is the relay number from 0 to 5
Reads the relay timer value and returns TWO bytes
high and low.
Example
Read timer value of relay 5
i2c.write(3,5)
i2c.read() // high byte
i2c.read() // low byte

4 0-0x3f Get state of all relays as a byte value
Each relay is represented by 1 bit either 0 or 1
Relay Bit
A 0000 000x
B 0000 00x0
C 0000 0x00
etc. 00AB CDEF
Example
i2c.write(4)
i2c.read()

5 All relays off

6 All relays on

System

EEPROM reset to defaults
This will restore the default EEPROM settings which
has the I2C address. No effect will take place until
the device is reset. This can take a few ms and so
some master I2C devices will need to take this into
account if a timeout is to be avoided.
This is a special command in that it can be called
regardless of the state of the EEPROM, in other words
it does not rely on the I2C address value, so if the
EEPROM values are random then this will restore as
factory defaults.
Example
i2c.write(0,0x55)

60 Adr 6-
255

Change I2C address
The address must be an even value, this is the 8 bit
or full address where an even address is write and an
odd address is read. It will not take effect until
reset.
The same effect can be achieved by writing to the
EEPROM
Example
i2c.write(60,adr)

61 Adr 0-
255

Read EEPROM
This will read a single value from an address in

EEPROM
Example
i2c.write(61,adr)
adr is the new I2C address.

62 Adr 0-
255
data 0-
255

Write EEPROM
Writes a single byte to the given address
Example
i2c.write(62,adr,data)
adr is the address of the EEPROM 0 to 255, data is
what to store there.

63 Gets device ID as 2 bytes
The first byte is the high byte of a 16 bit number
and the second byte is the low byte
Example
i2c.write(63)
i2c.read(2)
Returns 2 bytes, to resolve the is (first byte * 256
+ second byte)

64 Gets firmware version as 3 bytes
x.x.x
Example
i2c.write(64)
i2c.read(3)
Returns 3 individual bytes e.g. 1,1,0 for v1.1.0

66 N/a Reset
Resets the device as at first switch on. Depending on
the I2C master this will likely cause a time out as
there will be no reply from the device and so this
may cause an I2C error from the master
Example
i2c.write(66)

BV4531 (Serial)
This section refers to the serial and USB interfaces

Pin Description

TX Transmit, output

RX Receive, input

V+ 5V supply for controller and relays

Rst Reset, leave disconnected or high,
pulling low will reset the
controller

Gn Ground

Serial connector, single 5 way

USB

This is an option of the serial interface and by default the USB
will supply power to the relays. However the USB cannot supply
sufficient guaranteed power to all of the relays if they are all
on at the same time.

There is a jumper pad marked USB that is closed which supplies
power to the board. If power is supplied externally then this
jumper should be open.

Serial Signals

The serial expects (TTL logic either 3.3V or 5V) NOT + and -12V
RS232. If you have the old 9 pin connector then a conversion
device will be required to transform the 12V levels to 5V or 3.3V
levels.

The serial interface uses 1 start bit, 8 data bits,1 or 2 stop
bits, no parity and no handshake, the default Baud rate is 9600
but this can be changed via an EEPROM setting. Or temporarily by
the B command.

Handshake

There is no hardware handshaking. This is provided in the way the
software works.

When the device is free to accept a command it will output a
prompt character (default ‘>’). The host will enter a command
sequence followed by CR (13, \r). The device will not interpret
the command until this is received. When received the command will
be carried out and when finished send a prompt.

The host must wait until the prompt is received as the device will
ignore any incoming characters whilst it is doing the command.

Addressing (TX only)

This is switched off by default and so a command will have
immediate effect, for example to set relay 3 to on the command is
r3,1.

If more than one device is connected to the serial bus then all
devices will respond, to enable more than one device to take
action it is possible to address the device individually and so it
is possible to turn relay 3 on on one board and without turning it
on another board.

The address will be the same as that used for I2C, in this case
0x46 which is the ASCII code for ‘F’. When using addressing
therefore the command would now be:

Fr3,1

Turn on addressing: W5,1
Turn off addressing FW5,0

Reception. Serial devices are not bus devices and strictly

speaking only one device is allowed per bus. The TX line is
normally held low thus preventing any other device from
responding. This is not the case with receiving though and so many
devices can is suitably addressed receive instructions.

Commands
General Rules

 CaSe is important.

 Values returned are in decimal

 Command act as soon as ‘\r’ is received.

 Numbers are separated by a ‘,’ unless it is a number after
the command in which case no comma is needed

Command Range Notes
t<r>,<a>,<y> t: 1 to

65535

r: 0 to 5

a: 0 or 1

Timed action
a: is the action for the relay to perform, 0 is turn
off an 1 is turn on.
t: is the time the action should take in seconds,
this is approximate.
Example: turn relay 3 on in8 seconds
t3,1,8\r

r<r>,<a> Turn on or off – not timed
a: is 0 for off 1 for on
Example: turn off relay 4
r4,0\r

g<r> R: 0 to 5Gets Relay current timer value A to F
Reads the relay timer value. When using timed values
this will return the remaining time left to the
action.

s 0-0x3f Get state of all relays as a byte value
Each relay is represented by 1 bit either 0 or 1
Relay Bit
A 0000 000x
B 0000 00x0
C 0000 0x00
etc. 00AB CDEF

o All relays off
f All relays on

System

E N/a EEPROM reset
This will restore the default EEPROM settings No
effect will take place until the device is reset.

B 1 to 8 Set Baud Rate
This is a temporary setting, for a permanent change
the EEPROM values must be set.
The value is a choice of Baud rates from 1 to 8, see
the table in the EEPROM settings section.

R<a>,<n> a: 0 to Read EEPROM

255

n: 0 to
255

Read the eeprom starting at address <a> for the
number of bytes <n>
Example: Read 5 bytes from eeprom starting at 8
R8,5\r

W<a>, a: 0 to
255

b: 0 to
255

Write EEPROM
Writes byte to address <a> Only one byte can be
written at once
Example: Write 27 to location 75
W75,27\r

I Gets device ID
As a decimal number

F Gets firmware version
As a string

X Reset
Resets the device as at first switch on

	Introduction
	Description
	Features
	Physical Description
	EEPROM Locations
	I2C Address
	Baud Rate
	Prompt
	Addressing

	I2C Interface
	Address (0x46 or 0x23 7 bit)
	Commands
	USB
	Serial Signals
	Handshake
	Addressing (TX only)

	Commands

