
ByVac Product Specification

Serial/I2C User Interface BV4612

October 2008 1 of 16 www.byvac.com

BV4612
Serial/I2C Front Panel User Interface
Product specification August 2015

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 2 of 16

Contents
1. Introduction.. 4

2. Description ... 4

3. Features... 4

4. Physical Description ... 4

4.1. Power Supply.. 5

5. I2C Interface .. 5

6. Serial Interface ... 5

6.1. Hand Shaking ... 5

7. Beeper ... 5

8. Keypad .. 5

8.1. Buffer .. 5

8.2. Tuning ... 5

8.2.1. Timebase ... 5

8.2.2. Trigger... 6

8.2.3. Channels.. 6

8.2.4. Scan Code.. 6

8.3. Tuning Commands... 6

8.4. Tuning Summary... 6

8.5. Key Buffer .. 7

8.6. Sleep Mode... 7

9. LCD ... 7

9.1.1. Fonts... 7

9.2. Images .. 7

9.3. I2C.. 7

9.4. Serial... 7

10. Device Parameters... 8

10.1. Address.. 8

10.2. Contrast... 8

10.3. Indicator Flag ... 8

10.4. ACK character... 9

10.5. NACK character... 9

10.6. Baud Rate .. 9

10.7. CR Character .. 9

10.8. Mode ... 9

10.9. Trigger... 9

10.10. Hysteresis .. 9

10.11. Key Table Pointer .. 9

10.12. Key table size ... 9

10.13. Debounce... 10

10.14. Repeat... 10

10.15. Timebase ... 10

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 3 of 16

10.16. Back Light .. 10

10.17. Key Table... 10

10.18. Sign On ... 10

10.19. Tips... 10

11. Keypad Commands.. 11

11.1. I2C.. 11

11.2. Serial... 11

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 4 of 16

Rev Change

February
2015

Preliminary

August
2015

Extended indicator byte for serial
interface. Version 1.5

August
2015

New PCB and back plate

1. Introduction
This is a serial / I2C user interface for use with
microcontrollers, for example the Arduino or
Raspberry Pi.

The output is in the form of an LCD display and
the input is a user-configured touch keypad with
16 keys.

Full I/O control can be realised with only 2 wires.
The keypad has a 32 byte buffer relieving the
host microcontroller of a considerable burden.

2. Description
The device consists of two parts, an LCD display
and a Touch panel. Both operate from the same
I2C address (0x6a (0x35 7 bit)) or serial
address 106 (‘j’).

Each touch pad consist of two capacitive touch
channels and a key is determined as being
pressed when both channels are activated. All of
this is decoded internally so the host is
presented with a simple key value.

For ease of use the keypad will buffer keys so
they can be read at a later time by the host
microcontroller.

The front of the PCB is designed so that a vinyl
or similar overlay can be stuck to it thus the
pads can be designed for the application in mind.
Several pads can be grouped to make one larger
pad if required.

3. Features
 Display 128x64 Graphic
 3 Fonts
 User selectable Serial/I2C address
 Software adjustable contrast
 Software variable back light
 16 Pad touch keypad
 32 key buffer
 Interrupt pins
 Pads fully configurable
 User printable Front panel overlays
 Dual Voltage 3.3V & 5V
 16mA @ 3V3 BL full on, 13mA off
 Sleep Mode 8.4mA
 Only 2 wires for full I/O control
 Beeper output

4. Physical Description

Back of Panel

Example of an overlay

The interface has a 2.54mm spaced 2 rows by 5
pins.

Pin Description

SCL I2C clock

GND Ground

SDA I2C data

3V3 3.3V * see text

INT Goes low only when a key is being
touched otherwise it is high

RX Serial Receive (input)

TX Serial Transmit (output)

V+ * See text

KEY Normally high, will go low if there
are any keys in the buffer.

GND Ground

SMD Pin connections

The SMD pins are also repeated to the left and
right of the LCD panel.

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 5 of 16

4.1. Power Supply
The device works on 3.3V but there is an on
board 3.3V regulator and so it can operate from
3.3V or 5V as follows:

3.3V

Use the 3v3 to power device, I2C should use pull
up resistors to 3.3V.

5V

The input regulator can have an input of up to
6.5V. Connect to the V+ input. The serial RX pin
is 5V tolerant but the TX pin will only output 0
and 3.3V. This will be good enough for nearly all
5V serial devices.

I2C pull up resistors should be connected to a
3.3V supply.

5. I2C Interface
The device has a standard I2C interface and will
act as a slave device.

0x6a (0x35) Keypad & LCD address

All commands go through the single I2C address
that can be changed if required by the user.

NOTE: The address is stored in EEPROM in three
places and a check is made at each reset to
verify the value. At leas two address location
values have to agree, if this is the case the third
is set to that. If no addresses agree then the
default address is used.

This is a robust method of storing addresses in a
semi-volatile memory and in nearly all cases the
address set by the user is maintained for ever.
However if it is critical that the address cannot
change under any circumstances then the part
can be ordered with a fixed address.

6. Serial Interface
The serial interface is via the TX and RX pins, By
default the Baud rate is set at 9600. This can be
changed by altering a value in the EEPROM via
the EEPROM write command.

The protocol follows the standard 1 start bit, 8
data bits and 1 or 2 stop bits. All data (with the
odd exception) is ASCII coded so that is the
number 75 is sent via the serial interface then
this will be TWO bytes '7' and '5', the actual
value of the bytes will be 55 and 53, that being
the ASCII codes for 7 and 5.

The exception to this is when sending image
data that requires a faster throughput.

NOTE: Serial date must be preceded by the
address (‘j’ or 106) by default.

6.1. Hand Shaking
This has been avoided by the use of ACK. A
serial command consist of a packet
<address><command and data><EOL>

All packets are less then the buffer size and so
the device will not respond until a full packet is
received. When the device receives a packet it
carries out the command and THEN send the
ACK back to the host. The host should not send
any commands until the ACK is received. This
method of communication avoids the need for a
hardware handshake that is the cause of so
many serial problems.

7. Beeper
There is an output that goes to 3.3v
momentarily when a key is pressed. This can be
attached to a standard beeper or buzzer to
indicate that a key has been pressed.

8. Keypad

8.1. Buffer
Normally when a key is touched the value goes
into a buffer an it can be read out using a
command. For the serial interface there is an
option whereby the buffer is not used and the
key value is sent to the serial interface directly.
This option is set by a bit in the indicator flag,
EEPROM address 3. For more information and
how to set this mode, see the text referring top
the indicator flag. (This is only available for the
serial interface).

8.2. Tuning
The touch panel has been set with default values
that are suitable for most applications and
should not really be altered. Having said that
the performance is greatly effected by the
covering used over the PCB. Thin vinyl does not
effect it much but thicker , glossy photo paper
does.

This text is provided for changes in physical
conditions. It will also inform on how the pad
works.

With care it is possible to adjust the pads to
make them more or less sensitive.

The adjustable values are all stored in EEPROM
and so they can be changed. It is possible to
stop the keypad working with unsuitable values,
if this happens there is an i2c EEPROM reset
command.

The following is a description of how the pads
are read and how they work.

There are 8 channels that are constantly being
scanned. Each pad is associated with 2 channels
to give the 16 pads on the device.

8.2.1. Timebase
Under 'untouched' conditions the channel will
reveal a value, the magnitude of the value is
determined by the timebase.

A timebase of 8mS will give a value of about
3000 and a timebase of 16mS will give a value

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 6 of 16

of about 5000. The higher the value the better,
however as there are 8 channels a full scan
takes 8 x timebase so increasing the timebase
will lead to a slower response.

EPROM mS Full scan

62 8mS 64 mS

125 16mS 128mS

Timing Examples

The table gives an idea of the delay likely when
setting a different timebase values.

The values are slowly averaged to form a stable
'untouched' condition.

8.2.2. Trigger
When a pad is touched the normal, average
value drops. Depending on the conditions and
the timebase this can vary between 100 and
1500.

An ideal trigger is set to half that amount, so if
the drop was 1000 then the trigger would be set
to 500, in practice probably just a bit less. The
compromise of course is that if the trigger is too
high the pads will be very unresponsive, if too
low false triggering can occur.

Once the trigger value has been exceeded
averaging stops and the pad is deemed to be
touched.

8.2.3. Channels
There are 8 channels but physically the touch
pads have two channels per pad, this enables a
4x4 matrix of 16 pads to be used.

A further advantage is that 2 readings must be
obtained before a pad is active making the
system more reliable.

The actual physical arrangement is:

4,7 3,7 2,7 5,6 4,6 3,6 2,6 5,8

4,9 3,9 2,9 4,8 3,8 2,8 5,7 5,9

Table mapping channel numbers to pad
layout

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Key pad numbers

The table shows the actual channels used which
rang from 2-9. So for example channel 5 and 6
must be active for key 4 to be active.

8.2.4. Scan Code
At the lowest level a scan code is derived from
the channel numbers.

2 3 4 5 6 7 8 9

MSB LSB

Scan code derived from channel numbers

The scan code is a byte value on the second row
of the table. An active channel will represent a
bit 1 and an inactive will be bit 0. For example,
refer to the channel numbers and key position
tables above.

2 3 4 5 6 7 8 9

1 0 0 0 0 1 0 0

Scan code for key pad 3

In the above example channels 2 and 7 are
active, this produces a scan code of 0b10000100
or 0x84.

The instantaneous scan code values can be read
with the appropriate I2C command. These are
not stored but the decoded value from the key
table is.

8.3. Tuning Commands
In order to assist with tuning some commands
have been provided. Command 10 will return 8
x 16 bit channel average values.

Note: The I2C command will need to fetch 16
values made up of the high and low bytes for
each channel.

The average values will indicate what trigger
level to have, this is an example:

3081 2932 3175 3020 3272 3285 2687 3135

Channel 2 is the first number and channel 9 the
last. This can be combined with command 11
that will return the delta value, thus:

Avg: 3058 2901 3153 2990 3246 3269 2658 3093
Dlt: 0 0 1222 0 0 1147 0 0

In this example a finger has been placed on the
first pad, command 11 is the second line and
shows the difference between the average value
and the touched value. A trigger of greater than
1300 would not register, the actual trigger value
for this is about 500.

8.4. Tuning Summary
Step 1. The average values should be set so
that they read around 2000 the greater the
better. The values are adjusted with the
timebase setting, the larger the value of the
timebase the higher the average value. However
this will effect the period between scans and so
the response time of the keys.

The formula is timebase * 1mS, this gives the
scan time. For example setting the timebase to
100 will give a scan time of (100*1) 100mS.
This means that it will take 100mS to see any
change in condition. In practice it may be
possible to go to 200 or 300mS or even more
depending on the application.

Step 2. Set the trigger to a low value say 100
and observe the delta output. This output is the
difference between the average value and the
pressed value. The delta output will only be
observed when pressing a key. The trigger
should be set to half the delta value. If the

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 7 of 16

trigger value is set too high then the key will not
respond. If it is set too low then false triggering
may occur.

Don’t forget EEPROM values will not take
effect until the device is reset.

8.5. Key Buffer
There is a 32 key, key buffer to store pressed
keys. It is a circular buffer for maximum
flexibility. It is up to the user to ensure that the
buffer does not become full as this will overwrite
previous keys.

There is an indicator bit (see Device Parameters
section) that will send a message to the display
if the buffer becomes full.

8.6. Sleep Mode
The device can be set to sleep mode via an I2C /
Serial command. In this mode the keypad is
inactive however the device can be awakened by
an I2C / serial read or write.

9. LCD
The LCD is a chip on glass (COG) type.

The LCD uses a UC1701 controller via an
internal SPI interface. The interface is write only
which limits the display to addressing columns
and pages only.

Even with this limitation is possible to produce
images using a free utility.

The layout of the display is in 8 pages, each
page is 128 columns wide and 8 bits high. When
writing to the display a byte is written at a time.
This produced 8 pixels in a vertical line.

The x co-ordinate can be 0 to 127, however the
y co-ordinate must specify a page 0 to 7. It is
possible to specify an exact (0-63) y co-ordinate
by specifying the correct page and then writing
a byte that corresponds to that pixel. This is
how images and fonts are produced.

The user need not worry too much about this as
the device has a built in font generator.

9.1.1. Fonts
Fonts can be specified to begin on any x pixel
but must start on a page (0-7).

There are three fonts, font 1 is 8 bits high and 6
bits wide and thus will fit into a page line, font 2
is the same as font 1 but 8 bits wide and so
looks 'bold'. Font 3 is double height occupying 2
pages.

9.2. Images
Images are sent to the device as binary for both
I2C and Serial. The format is:

<number of pages> <number of columns>
<data>

The data is in a particular format which suits the
page layout of the display. There is a utility
written in Python that will convert a 32bit colour
BMP image into a monochrome data block
suitable for incorporating into either a C for
ByPic file.

Images must not exceed 128x64 otherwise
distortion will occur.

9.3. I2C
Pseudo code for sending an I2C image. NOTE:
The serial function requires a time out, this is a
time out for getting each character

 i2c_start(106)

 i2c_putc(34) // command

 pages = img[0]

 bpp = img[1]

 i2c_putc(pages) // pages

 i2c_putc(bpp) // bytes per page

 for j = 0 to (pages*bpp)-1

 i2c_putc(img[j+2]) // binary

 next

9.4. Serial
Sending serial data requires a timeout as there
is no built in handshaking as there is for I2C.
The time out should be sufficient to allow the
device to laydown a byte of data.

Pseudo code for sending a serial image.

 puts(”jp5000\r") // 5000 is timeout

 pages = img[0]

 bpp = img[1]

 putc(pages) // pages

 putc(bpp) // bytes per page

 for j = 0 to (pages*bpp)-1

 putc(img[j+2]) // binary

 next

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 8 of 16

10. Device Parameters
The EEPROM contains important values that
control the way the device behaves. All of the
values can be changed by the user using the i2c
interface.

This mostly applies to the keypad as the LCD is
a separate entity and is not controlled by the on
board microcontroller but by the user.

The EEPROM consists of 255 bytes and in
general the first 16 bytes are used by the
system

Adr Default
Value

Description

0 0 System Use

1 106 Device address ‘j’

2 25 Default contrast

3 4 Indicator flag

4 6 ACK [1]

5 21 NACK [1]

6 1 Beeper

7 4 Baud rate Code [1]

8 13 End Of Line (EOL)

14 106 Device address copy

16 0 Reserved

17 0 Mode (keep to 0)

18 0 Trigger H

19 0xc8 Trigger L

20 5 Hysteresis

21 30 Key table pointer (KP)

22 16 Key table size

23 1 Debounce

24 10 Repeat H

25 0xc4 Repeat L

26 100 Timebase in 0.128mS

27 1 Back light

28 60 Sign on message location

250 106 Device address copy

Table 1 System EEPROM use NOTE [1]
applies to serial only

Key Code Table

Location Name Content

KP+0 K1 0x24

KP+1 K2 0x44

KP+2 K3 0x84

KP+3 K4 0x18

KP+4 K5 0x28

KP+5 K6 0x48

KP+6 K7 0x88

KP+7 K8 0x12

KP+8 K9 0x21

KP+9 K10 0x41

KP+0 K11 0x81

KP+1 K12 0x22

KP+2 K13 0x42

KP+3 K14 0x82

KP+4 K15 0x14

KP+5 K16 0x11

Table 2 Step tables

The user is free to use any locations that are not
occupied by the system but for future use it is
best to avoid locations below 32.

Most EEPROM values are only read on start
up so when changing values they may not
take effect until the device is reset.

10.1. Address
These EEPROM locations contains the device
address. By convention the address is set to
values between the values 97 to 122, no
checking is made by the device so setting values
outside this range may or may not work.

For security the address is stored in three places
and to change the address of the device at least
two of the locations need to be set otherwise the
device will detect the anomaly at start up and
revert to the majority value.

Normally to change the address of a device
locations 1 and 14 are both changed. The device
will detect this at start up and change the
address in location 250 to match.

10.2. Contrast
This is the default contrast setting for the LCD
display and the default value will give good
results in normal conditions.

The contrast can be set at any time so this value
does not need changing it is simply the value
that is used for initialisation.

10.3. Indicator Flag
(Extended for release 1.5, Aug 2015)

NOTE: Most of the bits in this flag are intended
for debugging mainly. The 'features' will more
than likely get in the way of a user program and

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 9 of 16

so should probably be switched off (set to 0).
There is one exception and that is the buffer full
flag. As the buffer should never get full it will
indicate programming errors.

This is a byte that has three bit value, when set
to 1 the indicator is on, when set to 0 it is off:

0b00efABCD

bit A is set by default, this will place text on the
top right to indicate I2C or serial mode

If bit B is set (key buffer full)

When this flag is set and the key buffer becomes
full, a message is printed on the bottom line of
the LCD display.

If bit C is set (keys in buffer)

If this bit is set the number of keys in the buffer
will be displayed top left.

If bit D is set (BL key flash)

If set then when a valid key is detected the back
light will flash off and then on.

The default value of the flag is 12, i.e. A+B

Serial Output Mode (bits e and f)

Setting these bits will bypass the built in keypad
buffer and output the key directly to the serial
interface as soon as the key is pressed. There
are 4 output options that are enabled by setting
the bits 4 and 5 as follows:

Bit 5(e) Bit 4(f)

0 0 (default) Option is off, when
a key is pressed the buffer
is filled. Keys are removed
form the buffer by using
commands

0 1 The buffer is not filled,
when a key is pressed the
key value is sent on the TX
line as a binary number.

1 0 The buffer is not filled,
when a key is pressed the
key value is sent on the TX
line as an ASCII coded
decimal number.

1 1 The buffer is not filled,
when a key is pressed the
key value is sent on the TX
line as an ASCII coded hex
number, always 2 digits
with a leading 0 if required.

10.4. ACK character
By default this is 6 but can be changed using the
EERPOM Write command. The effect will not be
implemented until the device is reset.

10.5. NACK character
By default this is 21 but can be changed using
the EERPOM Write command. The effect will not
be implemented until the device is reset.

10.6. Baud Rate
The Baud rate has the following values:

0. no valid

1. Baud rate is fixed at 2400

2. Baud rate is fixed at 4800

3. Baud rate is fixed at 9600 (default*)

4. Baud rate is fixed at 14400

5. Baud rate is fixed at 19200

6. Baud rate is fixed at 38400

7. Baud rate is fixed at 57600

8. Baud rate is fixed at 115200

10.7. CR Character
By default this is 13 which is the standard ASCII
CR and the whole serial protocol relies on this
being at the end of every command. It may be
that this is unsuitable in some systems and so
this can be changed.

10.8. Mode
This is used for testing purposes and should
always be 0

10.9. Trigger
This is a 16 bit value. The high and low values
are stored separately. If the trigger value is for
example 420 then this should be converted to
hex (0x1a4). The least significant digits 'a4' are
the low value and the most significant '1' is the
high value.

In this example 1 would be stored in location 18
and 0xa4 would be stored in location 19.

10.10. Hysteresis
This value should be set low, somewhere
between 3 and 20. It is difficult to determine the
exact effect but will go some way towards
preventing jitter (on/off/on) when a pad is
touched.

10.11. Key Table Pointer
This holds the address of where the key table is.
It would of course be possible to have other key
tables stored by adjusting this pointer

10.12. Key table size
As it says

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 10 of 16

10.13. Debounce
This is the number of full scans before a key pad
touch is accepted. See the text and timebase for
how long a full scan takes. Increasing this value
will delay the response time.

10.14. Repeat
This is a 16 bit number stored high and low (see
trigger). The actual value is found by trial and
error. When a pad is touched the value is
immediately recorded, if the finger is held there
another, same value is recorded until the pad is
untouched.

The time delay between each key record is
determined by this value. The default value of
1256 (0x4e8) gives about 1/2 second.

10.15. Timebase
This value is multiplied by 0.128mS, so the
default value of 100 gives 12.8mS. Further
details about what this does and how to adjust it
is given in the 'Tuning' section of the text.

10.16. Back Light
This is the back light condition at start up 0 is
off 1 is on.

10.17. Key Table
When a key (made up of 2 or more channels) is
touched it produces a unique scan code
depending on which channels have been
touched.

A further explanation of this is given in the
'tuning' section of the text.

The key table is searched for the scan code and
if it is found then the POSITION of the code is
stored in the key buffer.

So for example if the scan code was 0x28 then 5
would be stored in the key buffer. The codes
here give an extra level of stability as it is
necessary for two and only two channels to be
activated for the code to be accepted.

If just one channel is pressed by a finger not
quite on the pad then this will not be accepted
and also if the finger is across 2 pads this will
also not be accepted.

There may be occasions when this is infract
desirable to create a larger keypad made up of
several keypads for example. The key table can
be used for that.

10.18. Sign On
The start up message is stored in EEPROM and
so can be changed using the write to EEPROM
command. The start of the message location is
given in the table above.

The EEPROM is read from that location and will
send any byte as data to the display. The font

and position can also be sent by specifying a
sequence <column><page>.

The sequence should be terminated with 0xff.

Example: “Hello” on first line “World” on second
line, indented by 5 using font 2.

2,5,1,”Hello”,2,5,1,”World”,0xff

The command must be in the form of <
font><column><page> and in the above
example this follows the Hello and World.

10.19. Tips
Don't put in codes that only have one channel
(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02,
0x01) as each channel is connected to 4 pads
then it is likely that a false reading will occur.

When using multiple keys it may be possible to
use the code or channel from between the two
keys. Thought must be put into this though as
this may be the code for another key.

The design of the keypad overlay will need
careful consideration of this fact if 'in between'
values are to be used.

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 11 of 16

11. Keypad Commands

11.1. I2C
Key pad commands I2C address 0x6a (0x35 7 bit address)

All I2C transactions start with a command for example:

8 bit pseudo code get value from buffer

i2c_start(0x7a) // write
i2c_putc(3)
i2c_stop()
i2c_start(0x7b) // read
value = i2c_getc()
i2c_stop()

7 bit pseudo code get value from buffer

i2c_start()
i2c_write(0x3d,3)
i2c_stop()
i2c_start()
value = i2c_read(0x3d)
i2c_stop()

The examples given in this table user notSMB (http://www.pichips.co.uk/index.php/RPi_Not_smBUS)
that has three parameters:

optional value = bus.i2c(<i2c 7 bit address>[write to i2c],read from i2c), example :

value = bus.i2c(0x3d,[3,7],2)

This will address a device 0x3d, send bytes 3 and 7 and then read two bytes. In Python 'value' will be
a list that can handle multiple bytes.

11.2. Serial
All serial commands start with the address, for convenience only the command values have been
chosen to be in the printable rage. This makes debugging and experimentation easier.

A serial transaction is a packet that has the following elements:

<address><command and data><EOT>

The address for this device is the same as the I2C address by default 106 (‘j’). All devices connected
to the bus listen out for their address as the fist byte of a packet.

<command and data> The next byte will be a command as indicated in the table below followed by
any necessary data. There is no separator for the fist byte after a command but subsequent data
items should be separated by a comma or space unless the command says otherwise. As an example
to get a particular key in the buffer the command is ‘d’. If we look dor say key 3 then the complete
command would be “jd3”.

For commands that require more then one byte for example write to EEPROM then a comma is used,
in this example: jW5,21 the value of 21 is written to address 5.

Serial I2C range Default
Value

EEPROM
Location

Description

a 1 n/a Clears keypad buffer

bus.i2c(0x3d[1],0)

b 2 0-79 Gets number of keys in buffer

Returns 0 if no keys are in the buffer

value = bus.i2c(0x3d[2],1)

c 3 0-16 Get key value from buffer

Key values are from 1 to 16 but this can be
reduced or increased by configuring the key
pad table in the EEPROM

0 is returned if no keys are in the buffer

value = bus.i2c(0x3d[3],3)

d 4 0-16 Key in Buffer

Checks to see if a particular key is in the
buffer. It returns 0 if the key has not been

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 12 of 16

found or a number representing the position
of the key in the buffer.

jd3 – returns n if 3 is in the buffer

value = bus.i2c(0x3d[4,keyToFind],1)

e 5 0-255 Get scan code

See 'tuning' section in the text for an
explanation of what a scan code is. This will
return a scan code if a pad is being touched
and 0 if not.

The command will produce unreliable results
for a particular key however it may useful
for something like a volume control. Any
valid key in the key table will still be stored
in the buffer so this should be cleared from
time t time.

value = bus.i2c(0x3d[5],1)

j 6 0-255 Beep

Turns on beeper for number of mS,

Example short beep 50mS

value = bus.i2c(0x3d[6,50],0)

f 10 0-65535 Returns 8 average values representing
channels 2 through 9

This will in fact return sixteen values as
I2C can only return 8 bits at a time. The
value is sent as high low. To get the actual
value requires something like:

value = i2c_get() << 8

value = value + i2c_get()

The value will now contain a 16 bit number.

value = bus.i2c(0x3d[10],16)

g 11 0-65535 Delta values for all channels

This returns 16 values (8 16 bit channels
see command 10)

The value returned represents channels 2
through 9, 2 is the first 9 is the last. The
actual value returned is the difference
between the average value and the touched
value.

If no pads are touched then the return value
will be 0. The trigger value is important in
that the touched value has to be lower then
the average minus the trigger for this value
to change from 0. If ny zeros are being
returned when the pad is touched then the
trigger is set too high.

See also the 'tuning' section of this text.

value = bus.i2c(0x3d[11],16)

i 21 Sleep

This will put the device into sleep mode.
Once in this mode the only way to wake is
either by reset or an I2C read/write. The
keypad will not work in sleep mode.

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 13 of 16

bus.i2c(0x3d,[21],0)

LCD Range Time

k 30 0-255 500mS Reset LCD

Resets LCD. This is just the LCD and will not
print the sign on message

NOTE: This command requires 500mS to
complete before sending the next I2C
command.

bus.i2c(0x3d,[30],0)

m 31 0-255 LCD Command

Sends a command to the LCD controller; a
command usually effects the way the
display behaves.

Example: to clear the screen:

bus.i2c(0x3d,[31,1],0)

Example to put cursor on the second line:

bus.i2c(0x3d,[31,0xc0],0)

n 32 0-255 LCD Data

Writes a byte to the display at the current
cursor position.

Example, writes '66'

bus.i2c(0x3d,[32,66],0)

NOTE: This will not write a character but a
byte. See the section in the text on the LCD
layout.

o 33 string of
characters
followed
by EOL

LCD String

Writes a string of characters to the display
at the current cursor position.

Example, writes 'abcd'

bus.i2c(0x3d,[32,61,62,62,64,13],0)

WARNING: Leaving the terminating EOL off
may cause indeterminate results for the
next command and even cause the I2C bus
to lock up.

EOL is defined in the EEPROM and the
default is 13

p,timeout 34 LCD Data Image

Send data string as binary data

Serial requires a time out so the command
to send an image would be something like
jp,5000

For more information see text and [1] Note

q 35 10mS LCD Sign on

Displays the current sign on string stored in
EEPROM, this is useful for testing

bus.i2c(0x3d,[35],0)

r 36 0-1 Sets Back light on/off

1 is on, 0 is off

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 14 of 16

bus.i2c(0x3d[1],0)

s 37 0-63 Sets Contrast level

The level required depends on the supply
voltage and there is a considerable
difference between 3.3V and 5V settings.
Normally 25 is okay for 5V and 45 is okay
for 3.3V.

Example, set contrast to 25

bus.i2c(0x3d,[37,25],0)

This is a hybrid command and can also be
derived from using the lcd command (31)
above.

n/a 38 Send data Bytes

This is instead of the image command.
Some masters (Arduino) cannot handle
sending large amounts of I2C data. [1]
Note

t 40 1 to 3 Sets Font

There are three built in fonts:

1 is 8x8 normal

2 is 8x8 bold

3 is 16x8

Example, to set font 2

bus.i2c(0x3d,[40,2],0)

u 41 Homes cursor and clears screen

Example,

bus.i2c(0x3d,[41],0)

v 42 0-127 Sets column address

The column address is the X direction, after
setting this the next item to be printed will
start at the position specified

Example, set column to 25

bus.i2c(0x3d,[42,25],0)

w 43 0-8 Sets Page

See the text, there are 8 pages which
represent the Y direction.

Example, set page to 5

bus.i2c(0x3d,[43,5],0)

x 44 0-63 Sets Initial Scroll line

This can be used to scroll the display, it can
adjust the display in a vertical direction. The
default is 0

Example, set to 5

bus.i2c(0x3d,[44,5],0)

y 45 Valid Char Writes a character

Writes a character at the current location
with the selected font.

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 15 of 16

Example, To write A

bus.i2c(0x3d,[45,65],0)

System

W 0x91 n=0-255

m=0-255

Write to EEPROM

This will write a single byte to an EEPROM
location

I2C Example write 23 to location 7

s 0x91 7 23 p

or

bus.i2c(0x34,[0x91,7,23],0)

See www.pichips.co.uk and ‘notsmb’ for an
explanation of the above nomenclature.

R 0x90 n=0-255

m=0-255

Read from EEPROM

Reads a singe EEPROM values from a given
address.

Example

To read from location 3:

s 0x90 3 r g-1 p

or

bus.i2c(0x34,[0x90,3]1)

See www.pichips.co.uk and ‘notsmb’ for an
explanation of the above nomenclature.

D 0xa1 Device ID

Returns two bytes representing a 16 bit
number, high byte first

s 0xa1 r g-2 p

or

bus.i2c(0x34,[0xa1],2)

See www.pichips.co.uk and ‘notsmb’ for an
explanation of the above nomenclature.

C 0x95 Reset

Resets an individual device. This is a soft
reset.

A soft reset will normally be the same as a
reset at start-up but this may not always be
the case.

Example

s 0x95 p

or

bus.i2c(0x34,[0x95],0)

See www.pichips.co.uk and ‘notsmb’ for an
explanation of the above nomenclature.

E 0xA2 EEPROM reset

Will reset the EEPROM back to the default
values.

bus.i2c(0x3d,[20],0)

ByVac Product Specification

Serial/I2C User Interface BV4612

©ByVac Page 16 of 16

V 0xa0 Version

Returns the firmware version as two bytes

value = bus.i2c(0x3d[0xa0],2)

[1] Note

The best (fastest) way to send an image is to stream the data. This can more easily be achieved using
a serial interface. This is the purpose of the image command. For an I2C interface however some
masters cannot handle a constant stream of data, internal buffers limit the number of bytes that can
be sent. In this case the Send Data Bytes command is used to get the data out block by block.

