
BV4627 User Guide

Rev Change

Dec
2010

Preliminary

Jan
2011

Update Firmware
version 1.1 (IR setup)

Jan
2011

Addition of Arduino
Library

Nov.
2013

Added RPI I2C
instructions, using
notSMB

Resources (zip file) can be found on www.byvac.com/bv3 under the description of the 8
Way relay. This is in the category interface/output.

Introduction
This is an 8 way relay board that can be used for general purpose switching or
timing. It has 4 interfaces so that is can be used with a PC or microcontroller or
other electronic equipment in various ways. The relays have indicator lights to make
servicing easier and are also capable of delayed switch on and off.

There are two versions of this board, the full version with USB, IR, Binary and I2C
interfaces and a cut down version that does not have the USB and IR interfaces
fitted.

Physical Interfacing
This device has no less than four interface options:

1) Binary interface

2) I2C interface

3) USB interface

4) IR interface

Only one interface at a time can be used and this is detected on reset. In the
absence of all other interfaces the IR interface will prevail, provided that it has
first been set up using the USB interface. This Guide will go through each interface
in turn.

Binary Interface
This interface has been designed to make it easy to attach to another electronic
device and control the relays. This will normally be a microcontroller but could just
as easily be some discrete logic.

The interface is at the top of the board above the USB socket and consists of 6 pins.

Pin Function

A3 Relay select

A2 Relay select

A1 Relay select

A0 Clock

GND Ground

+5V Power supply

Power to the board is supplied by the +5V input. The logic will work down to 3V3 but
the relays will not operate at that voltage to 5V is required.

Four output lines are required, three to select the required relay A through H and
one for the Clock. The PCB is marked A0 to A3 and pins A1 to A3 are used to select
the relay.

Rly> A B B D E F G H

A1 0 1 0 1 0 1 0 1

A2 0 0 1 1 0 0 1 1

A3 0 0 0 0 1 1 1 1

The clock line is A0 which is normally low and has a very simple scheme whereby if
the clock is pulsed quickly (high / low in less then 5mS) this will turn the relay
off. If longer then the relay will be turned on.

A0 Also has another important function; it must be held low during reset or power up
in order to select the binary interface, one in this mode the device will stay in
this mode until power cycled or reset.

A3

A2

A1

A0

Relay A
OFF

Relay G
ON

< 5mS
>100uS > 5mS

The timing for the clock pulse is very flexible in that any length of clock less than
5mS will turn the relay off and any longer then 5mS (even 1 or 2 seconds) will turn
the relay on.

Programming
To give an example of how this may be interfaces PIC32 Basic is used.

Port lines D1,3,5 and 7 are used and they are all set to output. To make selection of
the relays easier a large case statement is used.

This of course just selects which lines are on and off and so other arrangements
could be made. For example to switch on relay 5 (F) the table requires that A1=1,
A2=0, and A3=1 which is exactly what is selected in the case statement.

If consecutive ports were used say D0 to D2 then it would be a very simple matter of
applying that value to the port, e.g PORTD=5. This also of course assumes that
nothing else is connected to the port.

NOTE That the set up make sure that A0 is in the low state, this is the normal or
idle state.

The Clock again is quite straightforward.

The function at line 38 will switch on the selected relays as follows: ‘r1’ is set to
a value say 5 and this will select the relay by setting lines A1 to A3, in this case
line 29 will select A1=1, A2=0 and A3=1.

Next A0 is taken high and held there for more than 5mS, in this case 10mS (line 41)
just to be sure, it is then taken low again.

To switch the relay off there is no delay between taking A0 high and putting it back
low again. This will switch the selected relay off.

The functions could be used something like:

r8_bon(1) // switch on relays A,B and G

r8_bon(2)

r8_bon(7)

r8_boff(3) // switch off relays C and D

r8_boff(4)

Notes About the Binary Interface
You can only switch on and off relays, there are no timed facilities as there are on
the other interfaces.

The interface is designed for simplicity and this takes priority.

The A0 line MUST be held low at start up in order to select the binary interface.
There is a vey weak pull up resistor on this line (A0) at start up and so if it is
left disconnected the binary interface will be ignored.

I2C Interface
This interface has been provided to give a standard microcontroller i/o to the
device. The address of the interface is 0x64 (8 bit notation) 0x32 (7 bit notation).
For more information about 7 & 8 bit addressing read this
http://www.i2c.byvac.com/ar_trouble.php guide. The address can be changed via this or
the USB interface if fitted.

This interface will allow timed delays to switch the relays adding flexibility and a
degree of autonomy to the device.

The interface is at the bottom left of the board and consists of four pins.

Pin Function

SCK I2C Clock

G Ground

SDA I2C Data

+V +5V Power

The power supply is provided for the board via the +5V and Ground. The Clock and data
lines WILL require a pull up resistor somewhere on the I2C bus, this is normally
provided by the master device.

Selection
This interface is selected by holding the SDA line high at switch on. This will
happen normally if connected to an I2C bus as the pull up resistors on the bus will
do this. If the interface is left unconnected at switch on there is a high value pull
down resistor which will deselect this interface.

Programming
There are no special requirements for this device; it will act as a standard I2C
slave. The device is command driven; following the address a command is expected. For
a list of commands consult the data sheet.

It is also important to understand the number of bytes that are expected for each
command as they differ. For example to switch a relay on requires 4 bytes after the
address, the first to specify the relay, the second for on/off and the third and
forth to specify a delay if any. When two bytes are used to represent a 16 bit number
the high byte is always first. If for example 450 decimal was specified as a delay
then convert to hex (using the Windows Calculator) = 0x1c2. This can now be sent as
two bytes 0x01 and 0xc2.

There is a possible pitfall when using commands 10 through 17 and that is the relays
require a finite time to activate as they need to go through the timer even if the
time is set to 1. If for example you set all of the relays to on and then immediately
set a timed off the chances are that this will fail because the relays will not have
had time to respond to the on command before receiving the off command. For this
situation use command 19 or 20 to turn the relays on and then set the off time.

Examples Python - Windows and Raspberry Pi

Serial
This will only apply to the full version and both Windows and PRi will be the same.
The only difference will be the name of the COM port.

I2C
Windows PC's do not normally have a built in I2C interface and so a BV4221_V2 device
will be needed. For full details; see this link:

http://www.pichips.co.uk/index.php/Windows_I2C

I2C RPi
The RPi out of the box does not support I2C, this needs to be enables and software
needs installing, full instructions for this are here:

http://www.pichips.co.uk/index.php/RPi_Software_Installation

Once installed and connected, open a console and type sudo i2cdetect - y 0 OR sudo
i2cdetect -y 1, the latter is for the newer RPi versions that use I2C bus 1

If you don't see '32' as above then something is wrong with either the connections or
the software installations so check to try and find out what you have done wrong.

A simple test is now to download the test program 'bv4627.py' from the product
documentation here:

http://doc.byvac.com/index.php5?title=Product_BV4627

and run it from the console. It will turn all of the relays on and then off in turn.

Examples PIC32 Basic
The following examples have been written in PIC32-Basic but this is an easy language
to follow and so provides a good example.

A useful function is the send command as most of the time a command is required. To
turn all of the relays on for example would be r8_cmd(19). It works by first sending
a start condition followed by the address which is stored in ADR (0x64). The red ‘1’
is the I2C channel as there are two channels on the BV513 (which runs PIC32-Basic).
The next step is to output the command to channel 1 and then issue the stop
condition.

To turn all of the relays on, the I2C bus would see the following information:

s 0x64 19 p

Where s is the start condition and p is the stop condition.

Nearly all read commands will return 2 bytes, the high byte being first:

This is used in the form r8_get16(83), the command ‘83’ is the get device ID that
will return 4627. Line 45 will send the command to the device. Line 46 is the read
address which is always 1+ the write address. At line 47 the byte received from the
device with the i2cget command is multiplied by 256 because it represents the high
byte. The next byte (low byte) is simply added to the first one. The result is a
16bit read from the I2C device.

The I2C bus would see this:

s 0x64 83 p s 0x65 r-2 p

Where ‘s’ is the start condition, ‘p’ is the stop condition and ‘r-2’ gets two bytes.

This is a slightly more complex example that uses commands 10 through 17 to give
timed action. The delay is specified as two bytes, high byte first. The high byte is
obtained form the number given (delay) by shifting 8 bits to the right and using that
as the high value (line 57). The low byte (line 58) is simply the number with all of
the other bits masked off.

The whole thing is then sent to the I2C bus. For relay 11, turned on with a delay of
300 the I2C bus would see:

s 0x64 11 1 0x1 0x2c p

300 split into high and low bytes is 0x1 and 0x2c.

Example Arduino
There is an Arduino library in the resource pack “Arduino_lib_bv4627.zip” which can
be unzipped and placed into the Arduino environment, in the libraries folder. The

example uses the library to print out the Device ID, the Firmware version and a count
down of the timer to relay 2.

The SDA line is connected to A4

The SCL line is connected to A5

The Arduino Nano +5V was used to power the device and 2 pull up resistors were used
but these may not be necessary as the ATmega has pull up capabilities that are used
on the port lines.

Upload and the library and run the sample, then press Serial Monitor which will
restart the board and show the count down.

This has been tested on an Arduino Nano with the ATmege238 fitted.

Library functions:
BV4627 is the class and this is instantiated with the address of the device. Audrino
uses 7 bit addressing and so divide the device address by 2, thus the address is
0x32.

click(char rly, char on, int del)

The word switch would have been better but this is a C keyword. This will turn on or
off a specified relay 1 to 8 where 1 is relay A and 8 is relay H. Set on to 1 to turn
the relay on and 0 to turn it off. The delay is only approximate and will slow down
if there is a lot of serial activity but 13 will give approximately 1 second. The
maximum value is 65535. Zero or one will give no delay.

int timer(char rly)

The value of the count down timer can be monitored (to see how much time is left
before the relays switched). This will return the value of the relays count down
timer.

off()

Turns all of the relays off

on()

Turns all of the relays on

bin(char rly)

This will set the relays on or off as determined by the supplied byte. A byte value
of 0x45 will turn on relays A,C and G and all the rest off:

H,G,F,E,D,C,B,A
0,1,0,0,0,1,0,1

setaddress(char newAddress)

Sets a new I2C address for the device, the address will take effect when the device
is next restarted and it will retain that address until changed again. NOTE: specify
an 8 bit address for the new address. For example specifying a new address of 0x24
will give an Arduino address of 0x12.

int deviceid()

This will return a 16 bit number which is the device ID. For this device it will
return 4627. This is useful for verifying the devices on the bus.

version(char *ver)

This returns the version number in the form ”major.minor” to the supplied buffer. The
buffer must be gig enough to accommodate the string. Major and minor are numbers in
string form.

reset()

Resets the device.

USB Interface
** The cut down version does not have the USB or IR interfaces fitted **

The USB interface is designed to be used with a PC and as such it presents itself as
a COM port. It uses the FTDO chip from Future Technology (http://www.ftdichip.com/)

The latest drivers for this can be found on their website, the driver required is the
Virtual COM Port VCP driver, choose the one for your operating system. When first
plugged in the PC will ask for this driver. It is actually built in to some Linux
systems.

This interface is also used to set up the IR section, for details on that see later
on in the text.

Baud Rate
The Baud rate is selected automatically as follows. When the USB is plugged in the
device detects that the USB interface is being used and waits for a byte value 13
(0x0d). This is carriage return that will normally be issued when the enter key of
the keyboard is pressed. In C this would be:

putch(13); or puts(“\r”);

It is important that this first character is correct as it will effect the operation
of the device. Use BV-COMM (in the resources pack) to get started, set Echo on,
115200 Baud , 2 stop bits and 8 data bits.

Connect the device, press return and ‘*’ should appear:

The ‘*’ is the response form the device to indicate that it is ready to accept
commands.

To turn relay A on press the escape key, press the ‘[‘ key, press the 1 key and then
press UPPER case A

e.g. esc[1A

As the escape is a none printable character it looks like a square on BV-COMM. It is
a good idea to get used to the commands using BV-COMM before programming.

Programming
For these examples Just Basic will be used (http://www.justbasic.com/index.html).
This is a free programming language that has good COM Port support and is easy to
understand. A more advanced version is available if you like it. Read the web site
for how to set it up and install. If you already have VB installed then use that.

The first thing to establish is opening the port. It is not printed here but it is in
the source code. For this example we will turn on all of the relays and then turn
them off one by one using the delayed switch off.

The above is in a different editor that has line numbers to make the example easier
to explain…

Line 10: This opens COM port 5. The actual routine to do this is not shown but it is
in the supplied source code. It has also been found that a delay is required after
opening the port.

Line 13: To establish the Baud rate with the device a byte value of 13 is sent. This
only needs to be sent once, after reset but it is included here in case this is the
first time that is has been used. This also needs a delay for the device to establish
the correct rate.

Line 16: Command to turn all of the relays on

Line 17: To make it clear what is being sent, this is also printed out.

Line 27: simply sends a command to the COM port, as all commands are preceded with
escape this just saves a bit of typing.

This is the output from the program.

ACK
The most difficult part of serial communication is the handshaking. This is not
strictly necessary as ‘waits’ can be implemented instead but this will slow down the
project to the slowest common denominator.

Hardware handshaking is best where the host RTS is connected to the device CTS but
this can be the most troublesome. The USB port on this device has implemented this
and so if it works okay in your system then no further action need be taken. When the
device buffer gets full it will signal to the host to stop sending characters.

If this is not available then an ACK mechanism has been provided but this is switched
off by default. To switch it on choose a byte value, say 42 (‘*’) and use the
following command:

esc[42e

Now when any command is issued the device will carry out the command and output ‘*’
(in this case) which can be detected by software.

Below is an example of coding this in Just Basic. It would be used in the form:

call doWait 42

after a command had been issued. It could in fact be combined with the doCmd
subroutine to provide a complete command routine.

Infra Red

Setting up IR
The IR is set up using the USB interface and so this must be established first, see
the instruction in that section. You will need a remote control handset handy to
carry out the set up. The set up command is esc[?32m.

This will display a menu similar to:

Figure 1 IR Setup Screen

The first job is to select the type of controller to use. Option 1 is the safest
option as most remotes will do this in some shape or form. If it is an all-in-one,
choose some Philips equipment as the code. When a remote type has been chosen another
menu option will appear:

Figure 2 Second Menu

The “Test” option is used to test the remote for what codes it is sending out and how
the interface is decoding them. The “Map” option is used to map a code to a relay and
option 3 will allow a different type of remote to be selected.

Using Test
Select the test option and press any key on the remote. Just about any remote on any
setting will produce some output here. If there is no output then the remote is using
a frequency that is outside the receiver. The only solution to this is to use a
different remote (but try a different code first). Figure 3 Shows a typical output,
this output is unsuitable as we are looking for consistent values. Ideally just one
value per button, but some remotes produce several values. This is okay providing
they are consistently repeating and are different for as many relays you need to
control.

To recap; you are looking for a different code for each key pressed, this can be
several numbers but they must be consistent. If you choose incorrectly then simply do
the procedure again. The Philips option is worth pursuing if you have a universal
remote then try all the codes for a Philips TV

To exit the test press any key (on the keyboard not the remote).

Figure 3 Output 1

A better output is shown in Figure 4. This is the result of pressing buttons 1,2 and
3. As can be seen button one is 3C, two is 3A and three is 38. The numbers are in hex
but the actual value is unimportant as long as they are different.

It is perfectly possible to use an all-in-one type remote using the search facility,
just keep pressing the search button until some suitable output is produced. The only
way to test this is by mapping the keys and so this may be a time consuming but on-
off task.

Figure 4 Better output

Key Mapping
Once a suitable output from the remote is obtained, the remote can be mapped to the
relays. This means that any button on the remote can be mapped to any relay or
relays. Not all relays need to be mapped.

The method is to create up to 20 slots, each slot represents a key on the remote. The
slot can map to none, some or all of the relays in various ways. Each relay is given
a number and this means the following:

0 The relay plays no part in the selected slot
1 The relay will come on when the slot is activated
2 The relay will go off when the slot is activated
3 The relay will toggle when the slot is activated
4 The relay will come on only when the slot is activated

The slot is activated by pressing a button on the remote that will give the slot
value. In other words you can read button on remote=slot.

Slot A B C D E F G H
6 2 2 2 2 2 2 2 2
12 1 0 0 0 0 0 0 0
10 2 0 0 0 0 0 0 0
8 0 0 0 0 1 1 1 1
4 0 4 4 0 0 0 0 0

N=new slot, E=edit, D=Delete, F=finished

Above is an example from the map output, slot value 6 was obtained when pressing the
standby key on the remote. This has been set to turn off all of the relays. Slot 12
(button 1 on the remote) will turn on relay A, slot 10 turns relay A off. Slot 8
which was button 3 on the remote turns on relays E,F,G and H. Slot 4 which was the
volume control on the remote turns on relays B and C, when the button is release the
relays will go off.

Mapping Procedure
The best way to map the relays to the keys is to first create the slots, up to 20 can
be created and so various combinations of relay operations can be used. For this
demonstration the following is required:

Button Operation

1 relay A toggle

2 relay B on

3 relay B off

4 relay C,D momentary on

5 Relay E on F off

6 Relay F on E off

Power off All relays off

Seven slots are needed for the above.

From the USB interface enter the command esc[?32m. Select the remote control type
(its is assumed that this has already been set up using the instructions in “Using
Test” above).

From the menu select 2, which will bring us to the map menu:

Figure 5 Key Mapping 1

After pressing menu option 2 you are presented with Figure 5. On a fresh system there
may be no key mapping at all and so no slots will be seen. The factory test may leave
behind a couple of slots, these can be deleted with the delete option.

Press N to create a new slot and on the remote, whilst holding the key down, stars
will appear. The device is taking 10 samples of the output from the remote. When it
has taken the samples, release the remote.

Figure 6 Slot has been created

A slot has now been created, the ‘12’ in Figure 6 is the value that was read from the
remote when that particular button was pressed. The value must be unique and if a
repeated value is given it will be rejected.

Create another 6 slots using different buttons on the remote:

Figure 7 Slots created

At the moment the slots have been created but they will not do anything because the
relay values are set to 0. Slot 12 needs to be told to turn relay A on. Do this with
the ‘Edit’ option, simply press ‘e’ for the edit menu.

The Edit function will ask which slot, this should be the slot number, in this case
12. when this has been entered you are asked for a relay, enter ‘a’ through ‘h’ to
select the relay of interest and then put in a number form 0 to 4. The number 3 will
have the effect of toggling this relay. As we want this button only to control one
relay press CR and you will be taken back to the map menu:

See how relay A has now been set to 3. All of the other functions can be set up in
this way

Press ‘f’ to finish and then 4 to exit the IR menu.

To test the IR with the USB plugged in the command is esc[?32T There is no way out of
this command without a reset. When the USB is not plugged in and all of the other
interfaces are disconnected. The IR is active and so no command is needed.

